- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cummer, Steven_A (1)
-
Cushing, Colby_W (1)
-
Du, Huifeng (1)
-
Fang, Nicholas_X (1)
-
Haberman, Michael_R (1)
-
Li, Junfei (1)
-
Peng, Xiuyuan (1)
-
Rohde, Charles (1)
-
Shen, Chen (1)
-
Tan, Zheng_Jie (1)
-
Wilson, Preston_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metamaterials have offered unprecedented potentials for wave manipulations. However, their applications in underwater acoustic wave control have remained largely unexplored. This is because of the limited material choices and the lack of reliable fabrication techniques for the complicated structures. Herein, a metamaterial with microlattice structures as the building blocks is proposed for underwater operations. By designing the building blocks of the metamaterial and assembling them in a layered fashion, anisotropy is embedded in the structure, which results along different effective sound speeds in orthogonal directions. The designed metamaterial is fabricated by metal additive manufacturing using aluminum and steel. Experiments are performed using a resonator tube to evaluate its performance in water. An anisotropy ratio of around 2 is achieved, which is in good agreement with numerical simulations. The proposed metamaterial provides an effective means for underwater sound control with reduced fabrication difficulties and increased service life.more » « less
An official website of the United States government
